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Abstract

Mean shift clustering is a powerful unsupervised data
analysis technique which does not require prior knowledge
of the number of clusters, and does not constrain the shape
of the clusters. The data association criteria is based on the
underlying probability distribution of the data points which
is defined in advance via the employed distance metric. In
many problem domains, the initially designed distance met-
ric fails to resolve the ambiguities in the clustering process.
We present a novel semi-supervised kernel mean shift al-
gorithm where the inherent structure of the data points is
learned with a few user supplied constraints in addition to
the original metric. The constraints we consider are the
pairs of points that should be clustered together. The data
points are implicitly mapped to a higher dimensional space
induced by the kernel function where the constraints can be
effectively enforced. The mode seeking is then performed on
the embedded space and the approach preserves all the ad-
vantages of the original mean shift algorithm. Experiments
on challenging synthetic and real data clearly demonstrate
that significant improvements in clustering accuracy can be
achieved by employing only a few constraints.

1. Introduction

Mean shift is an iterative procedure for locating the sta-

tionary points of a density function represented by a set of

samples. Although the procedure was initially described

decades ago [14], it’s not been popular in vision community

until its potential uses for feature space analysis and opti-

mization were understood [7, 11]. Recently, the mean shift

procedure is used for a wide range of computer vision ap-

plications such as visual tracking [8, 17], image smoothing

and segmentation [10, 24], and information fusion [6, 9]. In

addition, the theoretical properties of the procedure such as

order and guarantee of convergence are discussed in several

studies [4, 10, 13].

Mean shift clustering is an unsupervised density based

nonparametric clustering technique. The data points are as-

sumed to be originated from an unknown distribution which

is approximated via kernel density estimation. The cluster

centers are located by the mean shift procedure and the data

points associated with the same local maxima of the density

function (modes) produce a partitioning of the space.

In many cases, prior information about the problem do-

main is available in addition to the data instances. For ex-

ample, a partial labeling of the data can be acquired from a

secondary process (e.g. face detector for scene categoriza-

tion) or via simple user supervision (e.g. a human operator

for initial segmentation of tumors).

Recently, semi-supervised approaches that aim to incor-

porate prior information and labeled data into the clustering

algorithm as a guide have received considerable attention in

machine learning and computer vision [1, 5, 15] including

the background constrained k-means [23], adaptive kernel

k-means [25], and kernel graph clustering [18]. It is shown

that unlabeled data, when used in conjunction with a small

amount of labeled data, can produce significant improve-

ment in clustering accuracy. Most semi-supervised cluster-

ing algorithms assume that pairwise must-link constraints,

i.e. pairs of points that should belong in the same cluster,

are provided with the data. Transitive binary constraints of

this form are natural in the context of the graph partitioning

where edges in the graph encode pairwise relationships as

in graph cuts [2] and random walk segmentation [16].

Unlike semi-supervised variants of k-means, spectral,

and graph clustering methods, the existing mean shift meth-

ods do not have a mechanism to utilize the labeled prior in-

formation in order to guide the type of the clusters desired.

Such a mean shift method would be critical in many appli-

cations from scene classification with weakly labeled data

to image segmentation.

In this paper we present a semi-supervised mean shift

clustering. To our knowledge, this is the first method that

incorporates the prior information into the mean shift clus-

tering by implicitly mapping the must-link constraints and

objective function into a higher dimensional space induced

by a kernel function as described in the following sections.

2. Method Overview

The motivation in this paper is to enforce a set of con-

straints given in terms of the pairwise similarities such that

the result of the final clustering algorithm groups the con-
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(a) (b) (c)
Figure 1. Illustration of constrained clustering. (a) Input space. Red crosses mark the constraint pair (c1, c2). (b) The input space is

mapped to the feature space via quadratic mapping φ(x) = [x x2]T . The black arrow is the constraint vector (φ(c2)− φ(c1))
T , and the

red line is its null space. (c) The feature space is projected to the null space of the constraint vector. Constraint points collapse to a single

point therefore the clustering algorithm trivially groups them together. Two clusters can be easily identified.

strained point pairs into the same clusters. In addition, we

would like to not only modify the clusters at the local scale

(just for the constraint pairs) but carry the enforced struc-

ture to the entire input space. By doing so, it is possible to

guide the clustering towards the interested structure of the

input space using only a few constraint.

The proposed approach for constrained mean shift clus-

tering is based on embedding the input space to a space

where the constraint pairs are associated with the same

mode when the density estimation is performed on the em-

bedded space. In addition we would like to enforce that the

original distances are best preserved while satisfying con-

straints. The proposed method still preserves all the advan-

tages of the original mean shift clustering since it is equiva-

lent to applying the procedure on the embedded space.

We start with the base example where a single constraint

is given and the clusters are linearly separable. Let (c1, c2)
be the point pair that is constrained to be clustered together.

If we project the input space to the null space of (c2− c1)T

which are the orthogonal directions to the constraint vec-

tor, the points c1 and c2 map to the same point, therefore it

is guaranteed that they are associated with the same mode.

In addition, null space projection is the optimal linear pro-

jection in the sense that it preserves the variance along the

orthogonal directions to the projection direction, hence the

original distance measure is best preserved.

This approach does not scale well with the increasing

number of constraints. Notice that, given m linearly inde-

pendent constraint vectors on a d-dimensional input space,

the null space of the constraint matrix is d−m dimensional.

This implies that if more than d−1 constraints are specified

all the points collapse to a single point therefore clustered

together. A simple solution exists for this problem and for

the generalization to the linearly inseparable case using a

mapping function φ which embeds the input space to an

enlarged feature space. On the embedded space the same

technique can be applied by projecting the points to the null

space of (φ(c2)− φ(c1))T .

In Figure 1, we present a simple illustration for a one-

dimensional example. Data on the input space appears

to be originated from three clusters. We incorporate the

prior information in terms of the pairwise constraint enforc-

ing the two cross marked points to be clustered together

(Figure 1a). In Figure 1b, data is explicitly mapped to

two-dimensional space via the quadratic mapping φ(x) =
[x x2]T . This mapping is arbitrary and only used for il-

lustration purpose. The black arrow denotes the constraint

vector and the red dashed line denotes its null space. By

projecting the input space to the null space of the constraint

vector the constraint points collapse to a single point there-

fore the clustering algorithm trivially groups them together

(Figure 1c). In addition, the projection carries the enforced

structure to the entire feature space and there are two sig-

nificant clusters.

Explicitly designing the mapping function and working

on high dimensional spaces is not practical. We present a

kernel based mean shift algorithm which implicitly works

on the enlarged feature space and extends the Euclidean

mean shift to inner product spaces. The constrained mean

shift on the kernel induced space then reduces to modifying

the kernel matrix with respect to the defined constraints.

3. Mean Shift Clustering
In this section we briefly describe the variable band-

width mean shift procedure [9]. Given n data points xi on

a d-dimensional space R
d and the associated bandwidths

hi = h(xi), i = 1, ..., n, the sample point density estimator

obtained with profile k(x) is given by

f(x) =
1
n

n∑
i=1

1
hd

i

k

(∥∥∥∥x− xi

hi

∥∥∥∥
2
)

. (1)

We utilize multivariate normal profile

k(x) = e−
1
2 x x ≥ 0. (2)
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Taking the gradient of (1), we observe that the stationary

points of the density function satisfy

2
n

n∑
i=1

1
hd+2

i

(xi − x)g

(∥∥∥∥x− xi

hi

∥∥∥∥
2
)

= 0 (3)

where g(x) = −k′(x). The solution can be found itera-

tively via the fixed point algorithm

x̄ =

∑n
i=1

xi

hd+2
i

g

(∥∥∥ x−xi

hi

∥∥∥2
)

∑n
i=1

1

hd+2
i

g

(∥∥∥ x−xi

hi

∥∥∥2
) (4)

which is called mean shift procedure. Comaniciu and

Meer [10] show that the convergence to a local mode of

the distribution is guaranteed when the mean shift iterations

are started at a data point.

4. Kernel Mean Shift
In this section we present the kernel mean shift algo-

rithm which forms the basis for the constrained mean shift

algorithm. The presented approach also extends the original

mean shift algorithm from Euclidean spaces to inner prod-

uct spaces thereby it is possible to apply the algorithm to

larger class of problem domains such as clustering on man-

ifolds [21]. However we will not focus on this aspect since

it is beyond the scope of the paper. We also note that a simi-

lar derivation for fixed bandwidth mean shift algorithm was

given in [22].

Let X be the input space such that, xi ∈ X , i = 1, ..., n.

It is not necessary that the input space is an Euclidean space

R
d. Let K : X × X �→ R be a positive definite kernel

function satisfying for all x,x′ ∈ X
K(x,x′) = φ(x)T φ(x′) (5)

where φ maps input space into the dφ-dimensional feature

space H, φ(x) = [φ1(x) φ2(x) . . . φdφ
(x)]T . The use

of kernel makes it possible to map the data implicitly to

an enlarged feature space where the nonlinear structure of

the data points can be studied and the constraints can be

effectively applied.

We first derive the mean shift procedure on the feature

space H in terms of the explicit representation of the map-

ping φ. The point sample density estimator at y ∈ H is

given by

fH(y) =
1
n

n∑
i=1

1

h
dφ

i

k

(∥∥∥∥y − φ(xi)
hi

∥∥∥∥
2
)

(6)

Taking the gradient of (6) with respect to φ, the stationary

points of the density function satisfy

2
n

n∑
i=1

1

h
dφ+2
i

(φ(xi)− y)g

(∥∥∥∥y − φ(xi)
hi

∥∥∥∥
2
)

= 0. (7)

Like (4) the solution can be found iteratively

ȳ =

∑n
i=1

φ(xi)

h
dφ+2
i

g

(∥∥∥ y−φ(xi)
hi

∥∥∥2
)

∑n
i=1

1

h
dφ+2
i

g

(∥∥∥ y−φ(xi)
hi

∥∥∥2
) . (8)

Now we derive the implicit form of the algorithm. Let

Φ = [φ(x1) φ(x2) . . . φ(xn)] (9)

be the dφ × n matrix of the feature points and K = ΦT Φ
be the n × n Kernel (Gram) matrix. We observe that at

each iteration of the mean shift procedure (8), the estimate

ȳ lies in the column space of Φ. Any point on the subspace

spanned by the columns of Φ can be written as

y = Φαy (10)

where αy is an n-dimensional weighting vector. The dis-

tance between two points y and y′ on the subspace is

‖y − y′‖2 = ‖Φαy −Φαy′‖2 (11)

= αT
yΦT Φαy + αT

y′Φ
T Φαy′ − 2αT

yΦT Φαy′

= αT
yKαy + αT

y′Kαy′ − 2αT
yKαy′ .

The distances can be expressed in terms of the inner

product of the points and the algorithm iteratively updates

the weighting vector αy. Let ei denote the i-th canonical

basis for R
n. Substituting (11) into (8), and using the equiv-

alence φ(xi) = Φei, the mean shift procedure becomes

ᾱy =

∑n
i=1

ei

h
dφ+2
i

g

(
αT

y Kαy+eT
i Kei−2αT

y Kei

h2
i

)
∑n

i=1
1

h
dφ+2
i

g
(

αT
y Kαy+eT

i Kei−2αT
y Kei

h2
i

) . (12)

The clustering algorithm starts on the data points on H,

therefore the initial weighting vectors are given by αyi
=

ei, such that, yi = Φαyi
= φ(xi), i = 1 . . . n. Upon

convergence the mode can be expressed via Φᾱyi . The

points converging to the same mode are clustered together.

The convergence of the procedure follows from the origi-

nal proof [10], since any positive semidefinite matrix K is a

kernel for some feature space [12] and the derived method

implicitly applies mean shift on that feature space.

Note that, when the rank of the kernel matrix K is

smaller than n, columns of Φ form an overcomplete ba-

sis. Therefore the modes can be identified within an equiv-

alence relationship where two modes Φᾱy and Φᾱy′ are

identified as same when ‖Φᾱy − Φᾱy′‖2 = ᾱT
yKᾱy +

ᾱT
y′Kᾱy′ − 2ᾱT

yKᾱy′ = 0. In addition, it is possible that

the mode can not be represented on the input space X since

the mapping φ is not necessarily invertible. Still it is possi-

ble to compute the distance of any point on the input space

to the modes using (11).
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Another important point is that the dimensionality of the

feature space dφ can be very large. For instance, it is infinite

dimensional, if the original kernel function (5) is the Gaus-

sian kernel. In those cases it may not be possible to com-

pute the point sample density estimator (6), consequently

the mean shift procedure (if hi is not constant). However,

the procedure is restricted to the subspace spanned by the

feature points. Since we have limited number of samples n,

the dimensionality of the subspace can be estimated from

the rank of the kernel matrix K.

5. Constrained Mean Shift Clustering
Let {(cj,1, cj,2)}j=1...m be the set of m input point pairs

which are identified to be clustered together. Following the

discussion presented in Section 2, we initially embed the

input space to a feature space via mapping φ and the con-

straints are satisfied by projecting the feature space to the

null space of the constraint vectors.

Let A be the m× dφ dimensional constraint matrix

A =

⎛
⎜⎝

(φ(c1,1)− φ(c1,2))
T

...

(φ(cm,1)− φ(cm,2))
T

⎞
⎟⎠ . (13)

The null space of A is the set of vectors N [A] = {w ∈ H :
Aw = 0}. The matrix

P = Idφ
−AT

(
AAT

)+
A (14)

projects the vectors in H to the N [A] where Idφ
is the

dφ dimensional identity matrix and + is the pseudo in-

verse operation. The null space projection matrix satisfies

Pφ(cj,1) = Pφ(cj,2), j = 1 . . . m.

Let S = AAT be the m × m scaling matrix. The en-

tries of S only involves the feature points through the inner

product (5)

Si,j = K(ci,1, cj,1)−K(ci,1, cj,2) (15)

−K(ci,2, cj,1) + K(ci,2, cj,2).

Therefore S+ can be computed without knowing the map-

ping φ.

Given the data points and the constraint set, the con-

strained mean shift algorithm maps the data points to the

null space of the constraint matrix

φ̂(x) = Pφ(x) (16)

and implicitly performs mean shift on the embedded space.

Since the constraint point pairs map to the same feature

point, it is guaranteed that they converge to the same mode.

Instead of rewriting the mean shift procedure on the em-

bedded space, it suffices to modify the kernel matrix K with

respect to the projection and apply the derived kernel mean

shift algorithm (12) on the modified kernel matrix K̂. The

equivalence simply follows from the fact that apart from

the distance computations the procedure is identical and the

distances only involve feature points in terms of the inner

products.

The projected kernel function is given by

K̂(x,x′) = φ̂(x)T φ̂(x) = φ(x)T PT Pφ(x′) (17)

= φ(x)T Pφ(x′)
= φ(x)T (Idφ

−AT S+A)φ(x′)

= K(x,x′)−K(φ(x),A)T S+K(φ(x′),A).

The identity PT P = P follows from the fact that P is a

projection matrix and it is symmetric. With a slight abuse

of notation K(φ(x),A) denotes the m-dimensional vector⎛
⎜⎝

K(x, c1,1)−K(x, c1,2)
...

K(x, cm,1)−K(x, cm,2)

⎞
⎟⎠ . (18)

We see that the modified kernel function K̂(x,x′) involves

the mapping φ via the inner products and can be written in

terms of the original kernel function K(x,x′). Notice that

the dimensionality of the projected subspace is m smaller

than the original subspace if the constraints are linearly in-

dependent or equivalently S is full rank.

It is possible that, instead of the data points, user can only

supply the kernel matrix K and the indices of the points for

the constraints. Let ν be the m×2 indexing matrix mapping

the constraint set to the input points, such that cj,1 = xνj,1

and cj,2 = xνj,2 , j = 1 . . . m. We refer to the i, j-th ele-

ment of a matrix M via Mi,j , the j-th column via Mj and

the columns of the matrix indexed by a vector v via Mv.

Substituting ν into (15) the scaling matrix can be written as

Si,j = Kνi,1,νi,1 −Kνi,1,νj,2 (19)

−Kνi,2,νj,1 + Kνi,2,νj,2

and similarly substituting ν into (17) and (18) the projected

kernel matrix can be expressed as

K̂ = K− (Kν1 −Kν2)S
+(Kν1 −Kν2)

T (20)

where Kνt
=
[
Kν1,t

. . .Kνm,t

]
, t ∈ {1, 2}.

In our experiments the bandwidth parameter for each

point is selected as the k-th smallest distance from the point

to all the data points on the feature space, where k is se-

lected as a fraction of the number of total points n. The

constrained mean shift algorithm is given in Figure 2.

6. Experiments
We conduct experiments on three datasets. The first set

of experiments are performed on challenging synthetic data
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Input: Kernel matrix K, Constraint index matrix ν , Bandwidth

selection parameter k

• Compute scaling matrix S via (19), projected kernel ma-

trix K̂ via (20)

• Compute bandwidths hi as the k-th smallest distance from

the point using K̂ and (11), and dφ̂ = rank(K̂)

• Repeat for all data points i = 1...n

– Let αyi = ei

– Repeat until convergence

ᾱi =

∑n
j=1

ej

h
d

φ̂
+2

j

g

(
αT
yi

K̂αyi
+eT

j K̂ej−2αT
yi

K̂ej

h2
i

)

∑n
j=1

1

h
d

φ̂
+2

j

g

(
αT
yi

K̂αyi
+eT

j
K̂ej−2αT

yi
K̂ej

h2
j

)

• Group points ᾱyi and ᾱyj , i, j = 1 . . . n satisfying

ᾱT
i K̂ᾱi + ᾱT

j K̂ᾱj − 2ᾱT
i K̂ᾱj =0

Figure 2. Constrained Mean Shift Algorithm.

where the implicit structure of the data are enforced with

only a few constraints. In the second experiment, we per-

form clustering of faces across severe lighting conditions on

CMU PIE database [20]. In the third experiment, we per-

form clustering of object categories on Caltech-4 dataset.

Notice that, our aim in here is not to produce the most

accurate clustering given the datasets, therefore we do not

focus on selecting the best feature set or modeling the in-

variances within class. In fact this, would not be a fair

comparison since our method has the obvious advantage of

being weakly supervised, and generally after introducing a

few constraints clustering is almost perfect. We present the

accuracy of the approach with respect to the base case which

is the kernel mean shift clustering without constraints, and

illustrate the effectiveness of the supervision process. We

note that the kernel mean shift is also implemented using

variable bandwidth and reduces to Euclidean mean shift

when a first degree polynomial kernel is used.

In the first two experimental setup we utilize Gaussian

kernel KN (x,x′) = e−
‖x−x′‖2

2σ2 with σ = 5 for the synthetic

experiments and σ = 1000 for the PIE dataset which are ap-

proximately equal to the mean of the pairwise distances be-

tween all the points. Note that in general the results are in-

variant under large perturbations of σ, where larger σ results

in smoother cluster boundaries. In the third experiment, we

utilize χ2 kernel, Kχ2(x,x′) = 2
∑d

i=1
x(i)x′(i)

x(i)+x′(i) , which is

commonly used for histogram based representations.

6.1. Synthetic Experiments

In the first synthetic experiment, we generated 240 data

points originating from six different lines in three orien-

tations. Data is corrupted with normally distributed noise

with standard deviation 0.1 (Figure 3a). In Figure 3b, we

(a)

(b) (c)
Figure 3. Clustering linear structure. (a) Original data. Three con-

straints are identified with the marked points. (b) Mean shift. (c)
Constrained mean shift.

(a) (b)

(c) (d)

Figure 4. Clustering circular structure. (a) Original data. (b) Data

with outliers. The marked points are identified to be clustered to-

gether. (c) Mean shift. (d) Constrained mean shift.

present the result of the mean shift algorithm. Since it has

no additional information regarding to the implicit structure

of the data points the mean shift algorithm finds five clus-

ters by grouping closer points in the original space. We in-

troduce three constraints shown with the marked points on

Figure 3a, where each pair is originated from a line with a

different orientation. In Figure 3c, we present the result of

constrained mean shift algorithm where the implicit struc-

ture of the data is captured with only three constraints, and
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(a)

(b)
Figure 5. PIE Dataset. (a) Fifteen illumination conditions are shown for two subjects. (b) Two constraints are specified per subject via

pairwise similarities. The nearby samples are constrained to be clustered together.

all the six clusters are perfectly identified.

In the second synthetic experiment, we generated 200

data points originating from five concenteric circles. Data

is corrupted with normally distributed noise with standard

deviation 0.1 (Figure 4a), and we add 80 outlier points (Fig-

ure 4b). This is a very challenging example and it is even

difficult to see the circle structure. The mean shift algorithm

finds nine clusters by grouping closer points in the original

space (Figure 4c). We introduce four constraints enforc-

ing the marked points on Figure 4b to be clustered together.

Even though the constraints identify one of the circles, the

constrained mean shift algorithm recovers all the five clus-

ters perfectly (Figure 4d). Note that, since we use variable

bandwidth, the outliers converge to the nearest mode in the

feature space. In both cases, the bandwidth selection pa-

rameter is selected as k = 20.

6.2. Clustering Faces Across Illumination

The CMU PIE database contains faces of 53 subjects

which are imaged under 21 different illumination condi-

tions. We conduct our experiments on a subset of 21 sub-

jects which are selected at random, hence our experimental

setup contains 441 images. We coarsely aligned the images

with respect to eye and mouth locations and resized them

to be 128 × 128. In Figure 5a, we show 15 illumination

conditions for two subjects. Due to significant illumination

variation, interclass variability is very large and some of the

samples from different subjects appear to be much closer to

each other than within classes.

We converted the images to gray scale and normalized

between zero and one. Each image is then represented with

a 16384-dimensional vector where the columns of the im-

age are concatenated. We note that, better representations

can be used by modeling the imaging process or using illu-

mination invariant features, however our motivation in here

is to demonstrate the capability of the presented approach

for learning the inherent structure of the data.

In this experiment, we consider the scenario where some

of the data points can be labeled apriori, and we would like

to utilize the prior information for the new observations. To

do so, we fix four illumination conditions which are moder-

ately different from each other, and produce two similarity

constraints per class. Therefore, 42 constraints are speci-

fied for 441 images which is approximately equal to label-

ing 1/10 of the dataset. In fact the supervision is weaker

in the sense that we do not specify number of subjects or

the labels for the constraints. In Figure 5b, four constraints

specified for two subjects are shown.

In Figure 6a, we present the pairwise distance matrix

(PDM) which is computed on the feature space via (11)

using the kernel matrix K, where darker colors indicate

smaller distances. The matrix is organized such that the

first 21 columns and rows correspond to the first subject

and the structure is repeated over the matrix. Ideally this

matrix should be block diagonal with 21 × 21 blocks. In-

stead, we see that the smaller distances are repeated across

the rows and columns which indicate different subjects un-

der same illumination are more closer on the feature space.

We perform mean shift clustering using the kernel matrix

K (without nulls pace projection). In Figure 6b, we plot the

pairwise distances using the converged modes. The origi-

nal mean shift clustering finds five modes corresponding to

partly illumination conditions partly subject labels and fails

to recover the true clusters.

In Figure 6c, we present the PDM after enforcing the

pairwise constraints (using the kernel matrix K̂). On this

matrix the block diagonal structure is easily observed. In

Figure 6d, we plot the pairwise distances using the con-

verged modes recovered through the constrained mean shift

algorithm. The algorithm detects all the 21 subjects and

clustering accuracy is 100%.

6.3. Clustering Visual Objects

In the third experiment, we perform clustering of visual

objects using bag of features representation. We sampled a

subset of 400 images from Caltech-4 dataset which includes

four object categories: airplanes, cars, faces and motorcy-

cles (Figure 7). From each image we extracted multi scale
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(a) (b)

(c) (d)

Figure 6. Clustering on PIE dataset. (a) Pairwise distance matrix

(PDM) on the feature space. The rows and columns are ordered

by the class. (b) PDM using modes recovered by mean shift. (c)
PDM after null space projection. (d) PDM using modes recovered

by constrained mean shift. The accuracy of constrained mean shift

is 100% whereas the original mean shift fails to recover the true

clusters.

Figure 7. Samples from four categories from Caltech-4 dataset.

DoG interest points and computed SIFT descriptors [19].

There were variable number of feature points per image be-

tween 500 and 3500. We generated a vocabulary of 500

visual words by clustering the descriptors via k-means clus-

tering. Each image is then represented with a d = 500 bin

bag of feature histogram.

In this experiment, we consider the scenario where an

expert can guide the clustering process by selecting a few

similar examples to be clustered together. Since the selec-

tion process is usually at random, we simulate the procedure

by enforcing pairwise constraints randomly selected within

classes.

In Figure 8a, we present the pairwise distance matrix

computed on the feature space induced by the χ2 kernel.

Although the block diagonal structure is more visible with

respect to the PIE dataset, there are still confusion within

the first and the last clusters which are airplanes and mo-

(a) (b)

(c) (d)

Figure 8. Clustering on Caltech-4 dataset. (a) PDM on the feature

space. (b) PDM using modes recovered through mean shift. Sev-

eral examples within airplanes and motorcycles class are misclus-

tered into the cars class. (c) PDM after enforcing 10 constraints

per class. (d) PDM using modes recovered through constrained

mean shift. Only a single example among 400 is misclustered.

torcycles classes. We performed the mean shift clustering

using the χ2 kernel and the pairwise distances at the con-

verged modes are shown in Figure 8b. Although the algo-

rithm finds four dominant modes corresponding to four cat-

egories, some of the samples from airplanes class and half

of the motorcycles class are incorrectly identified as cars

(third cluster). The overall clustering accuracy is 74.25%
which is computed as the percentage of correct labels after

identifying the unique maximal cardinality cluster within

each class.

In Figure 8c, we present a typical example of PDM after

enforcing 10 pairwise constraints per class which are se-

lected at random. In this matrix, the confusion across the

classes are much less and the constrained mean shift algo-

rithm can accurately cluster the objects (Figure 8c). Only a

single example among 400 is misclustered.

In Figure 9, we present the clustering error (1-accuracy)

with respect to the number of constraints per class. The

curve is generated as the average result over 20 runs where

at each run a different random set of constraints are selected.

We observe that, by introducing only a few constraints the

clustering accuracy is significantly improved, and it is over

99% for more than seven constraints per class.

6.4. Complexity

In general, kernel mean shift algorithm performs 20−30
iterations per data point. Assuming this is a constant factor

the computational complexity of the kernel mean shift algo-

rithm isO(n3) where n is the number of points. To compute
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Figure 9. Clustering performance with respect to number of con-

straints.

the projected kernel matrix for constrained mean shift, addi-

tional O(m3 + m2n) operations are needed where m is the

number of constraints. This term is negligible since usually

m << n. Approximately the algorithm takes 10 seconds

for clustering 400 points with a Matlab code.

The bottleneck of the algorithm is the memory require-

ment since O(n2) memory is required for storing kernel

matrices. An approximate solution to this problem is us-

ing low rank decomposition of kernel matrix using an in-

cremental SVD technique such as [3].

7. Conclusion

We presented a novel constrained mean shift clustering

method that can incorporate multiple pairwise must-link

priors. Experiments conducted on challenging synthetic and

real data show that using only a minimal number of con-

straints can competently enforce the desired structure on the

clustering and drastically improve the performance. The

presented approach also extends to inner product spaces

thus, it is applicable to a wide range of problems. As a

future work, we are going to extend the priors to include the

cannot-link pairs and soft similarities.
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